Evaluating Ecosystem Restoration in the Corps of Engineers:

Cost Effectiveness & Incremental Cost Analysis

Shana Heisey
Institute for Water Resources

What are CE/ICA?

Cost Effectiveness & Incremental Cost Analysis:

Tools to inform environmental investment decision-making.

Why CE/ICA?

- Project level analysis
 - Choosing efficient alternatives at individual projects
 - Not evaluating programmatic or policy implications
- By COE policy, environmental benefits are NOT monetized

Why CE/ICA?

- COE culture:
 - Long history w/ economic justification of NED projects
 - Engineering organization- science-based, number friendly
- Mitigation projects
- Timely appointment of Economist in ASA office

The climate was right

Corps CE/ICA Timeline

The Concepts non-monetary outputs

- Environmental benefit unit
 - Ideally measure of <u>quality</u> and <u>quantity</u> of output
 - Physical dimensions, population counts, diversity index
- Flexible guidance on methodology
 - HEP, IBI, HGM, "homegrown"
- Not everything quantified
 - Significance, story telling

The Concepts

• Cost Effectiveness:

- 1. No other plan provides the same output for less cost
- 2. No other plan provides a *higher output* level for the same or less cost

Incremental Cost Analysis

- 1. Greatest increase in output for least increase in cost
- 2. Lowest incremental costs per unit of output

The Concepts

- "Cost Effectiveness Analysis for Environmental Planning: Nine EASY Steps"
 - IWR Report 94-PS-2 (www.iwr.usace.army. mil/)
- "Procedures Manual: Cost Effectiveness and Incremental Cost Analyses"
 - (IWR Report 95-R-1) (www.iwr.usace.army.mil)
- Planning Guidance (ER 1105-2-100) (www.usace.army.mil/inet/functions/cw/cecwp)

CE/ICA in Application: Elizabeth River

11 Possible Restoration Sites

Scuffletown Creek- existing

Scuffletown-proposed future

Environmental Benefits

- HEP on clapper rail
- Functional Assessment Score (homegrown)
 - primary production
 - fish & wildlife habitat
 - water quality
 - erosion buffer
 - flood buffer
 - aesthetics
 - public access & educational value

Project Costs

- Implementation costs
 - Site prep, earthwork, landscaping
 - maintenance
 - periodic monitoring
 - real estate, disposal
- Avg annual equivalent
 - 50-yr life, 6 3/8% discount rate, FY 2000 prices

Elizabeth River: Input Data

Location	Total Implementation Costs	Average Annual Costs ¹	Annual Habitat Units (from HEP) ²	Annual Functional Assessment Score ²
Sugar Hill, Portsmouth	\$136,876	\$9,600	0.25	7.06
Carolanne Farms, VA Beach	\$297,431	\$20,700	1.05	32.54
Somme Avenue, Norfolk	\$308,610	\$21,400	0.54	14.75
Scuffletown, Chesapeake	\$87,781	\$6,200	0.28	6.92
NW Jordan Bridge, Portsmouth	\$237,564	\$16,500	1.14	31.61
Crawford Bay, Portsmouth	\$355,413	\$24,700	1.18	35.67
Woodstock Park, VA Beach	\$499,738	\$34,600	1.52	48.24
Lancelot Drive, VA Beach	\$1,583,079	\$109,400	4.49	133.25
Grandy Village, Norfolk	\$1,124,410	\$77,800	3.99	166.70
ODU Drainage Canal, Norfolk	\$175,795	\$12,300	0.56	18.76
Portsmouth City Park, Portsmouth	\$333,369	\$23,200	0.67	23.52

Average annual equivalent costs derived using an interest rate of 6-5/8%.

²Full realization of benefits is anticipated in year 3. Linear interpolation of benefits is assumed between years one and three.

Elizabeth River: All

Combinations Elizabeth River Environmental Restoration

Wetlands Habitat Assessment - All Plan Combinations

Elizabeth River: CE Plans

Elizabeth River Environmental Restoration

Wetlands Habitat Assessment - Cost Effective Plans

ICA Conceptually

- Assumption:
 - Doing something is better than doing nothing
- If so, where do we start?
- ICA helps determine which level of investment to do first
- Mathematically:
 - Change in cost / Change in output

ICA Graphically

Elizabeth River Environmental Restoration

Cost Effective Sediment Clean-Up Levels

ICA: "Best Buy" Plans

- Most efficient in production
- Greatest increases in output for least increases in cost
- Lowest incremental costs per unit of output

Elizabeth River: Best Buy Plans

Elizabeth River: Best Buy

Plans Elizabeth River Environmental Restoration

Wetlands Habitat Assessment - Best Buy Plans

IWR-Plan

- Software version of CE/ICA
- Developed to automate tedious math
- Provides standard outputs
 - Graphs
 - tables

IWR-Plan Basics

- Assists in plan formulation
 - Builds all plan possibilities based on
 - Up to 26 solutions, 10 scales
 - Dependency & combinability relationships
- Up to 10 input variables (costs & outputs)

IWR-Plan Availability

www.pmcl.com/iwrplan

Questions?